POZNARO POZNAR

POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

COURSE DESCRIPTION CARD - SYLLABUS

Course name

Calculation methods [S1BZ1E>MO]

Course

Field of study Year/Semester

Sustainable Building Engineering 2/3

Area of study (specialization) Profile of study

general academic

Level of study Course offered in

first-cycle english

Form of study Requirements full-time compulsory

Number of hours

Lecture Laboratory classes Other (e.g. online)

15 30 0

Tutorials Projects/seminars

0 0

Number of credit points

2,00

Coordinators Lecturers

prof. dr hab. inż. Wojciech Sumelka wojciech.sumelka@put.poznan.pl

Prerequisites

Knowledge: Mathematics: matrix calculus, knowledge of definitions and integration rules, elements of probability theory, elements of differential calculus; Skills: operating a computer station, using matrix calculus, basic techniques for solving differential equations, basics of differential calculus; Social competences: awareness of the need to raise professional and personal competences, updating knowledge and skills. Ability to cooperate in a group, respect for Polish;

Course objective

To familiarize students with modern, basic methods and numerical algorithms used in solving engineering tasks. Acquiring basic programming skills, defining goals and expectations of simple calculation applications.

Course-related learning outcomes

Knowledge:

- 1. Student knows basic numerical methods used in engineering practice [KSB W01]
- 2. The student knows the possibilities of using selected computer programs to implement specific numerical algorithms [KSB_W12]

3. The student knows the basic methods of construction of numerical algorithms, and measures of their assessment - [KSB_W12]

Skills:

- 1. Student is able to correctly determine the calculation model used to solve a specific engineering task [KSB U01]
- 2. Student is able to make the right choice of the algorithm needed to solve a given numerical task, and based on the algorithm is able to develop an intermediate application that solves a given task [KSB U02, KSB U09]
- 3. Student is able to make a critical assessment of the results of numerical analysis [KSB U07]

Social competences:

- 1. Student is able to work independently and with team on a given task [KSB K01]
- 2. Student is able to formulate conclusions and describe the results of own work [KSB_K02, KSB_K03]
- 3. Student recognizes the need to respect the Polish language, the need for continuous learning and cooperation in a group. Is aware of the need for self-education [KSB_K05]
- 4. Understands the need to protect copyright and the principles of professional ethics [KSB_K09]

Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows:

Learning outcomes presented above are verified as follows:

Lecture: checking knowledge through written colloquium - answer to 4-6 questions. Passing threshold: 50% of points.

Laboratory: knowledge checked by:

- a) assessment of student activity in classes,
- b) assessment of completed project tasks during classes during the semester (independent or in small teams) involving the preparation of a short application implementing the indicated numerical algorithm, and carrying out calculations for the prepared data sets.
- c) tests: two credits in the middle and at the end of the course independent work at the computer. Passing threshold: 50% of points.

Programme content

Lectures:

- Lecture 1 Solving systems of linear equations
- Lecture 2 Solving nonlinear equations and systems of nonlinear equations
- Lecture 3 Interpolation and approximation
- Lecture 4 Numerical integration and differentiation
- Lecture 5 Numerical solution of differential equation of the 1-st order
- Lecture 6 Numerical solution of differential equation of the 2-nd order
- Lecture 7 Mathematical optimization basic topics
- Lecture 8 Summary end-term test

Laboratories

- Laboratory 1
- o Introduction to engineering programming (matrix calculus, for-loop and while-loop)
- Laboratory 2
- o Exercises on solving systems of linear equations
- Laboratory 3
- o Introduction to engineering programming (indexing, plots, graphics, if statement)
- Laboratory 4
- o Exercises on solving nonlinear equations and systems of nonlinear equations
- Laboratory 5
- o Introduction to engineering programming (user vs. built-in functions,input input/output)
- Laboratory 6
- o Exercises on interpolation and approximation
- Laboratory 7
- o Exercises on numerical integration and differentiation
- Laboratory 8 MID-TERM ASSESSMENT

- Laboratory 9
- o Introduction to engineering programming (simple script I)
- Laboratory 10
- o Exercises on numerical solution of differential equation of the 1-st order
- Laboratory 11
- o Introduction to engineering programming (simple script II)
- Laboratory 12
- o Exercises on numerical solution of differential equation of the 2-nd order PART I
- Laboratory 13
- o Exercises on numerical solution of differential equation of the 2-nd order PART II
- Laboratory 14
- o Exercises on mathematical optimization
- Laboratory 15 END-TERM ASSESSMENT

Teaching methods

- 1. Lecture: multimedia presentation, illustrated with examples on the board.
- 2. Laboratory: multimedia presentation, illustrated with examples given on a board, and performance of tasks given by the teacher.

Bibliography

Basic

- 1. D. Kincaid, W. Cheney, Numerical Analysis, Mathematics of Scientific Computing, Austin 2006.
- 2. Z. Fortuna, B. Macukow, J. Wąsowski, Metody numeryczne, WNT, Warszawa 2005.
- 3. Paul F. Hultquist, Numerical Methods for Engineers and Computer Scientists Clean & Tight Contents Edition, 1988

Additional

- 1. S. Rosłaniec, Wybrane metody numeryczne z przykładami zastosowań w zadaniach inżynierskich, Oficyna Wydawnicza Politechniki Warszawskiej, 2002.
- 2. A. Bjorck, G. Dahlquist, Metody numeryczne, PWN, Warszawa 1983.
- 3. A. Brozi, Scilab w przykładach, Nakom, Poznań 2007.

Breakdown of average student's workload

	Hours	ECTS
Total workload	60	2,00
Classes requiring direct contact with the teacher	45	1,50
Student's own work (literature studies, preparation for laboratory classes/tutorials, preparation for tests/exam, project preparation)	15	0,50